150 research outputs found

    The Hamiltonian of the V15_{15} Spin System from first-principles Density-Functional Calculations

    Full text link
    We report first-principles all-electron density-functional based studies of the electronic structure, magnetic ordering and anisotropy for the V15_{15} molecular magnet. From these calculations, we determine a Heisenberg Hamiltonian with four antiferromagnetic and one {\em ferromagnetic} coupling. We perform direct diagonalization to determine the temperature dependence of the susceptibility. This Hamiltonian reproduces the experimentally observed spin SS=1/2 ground state and low-lying SS=3/2 excited state. A small anisotropy term is necessary to account for the temperature independent part of the magnetization curve.Comment: 4 pages in RevTeX format + 2 ps-figures, accepted by PRL Feb. 2001 (previous version was an older version of the paper

    Association between adherence to anti-diabetic therapy and adverse maternal and perinatal outcomes in diabetes in pregnancy

    Get PDF
    Objectives: To analyse the association between adherence to anti-diabetic therapy (diet, physical activity and medications) and perinatal outcomes.Methods: A cohort design was used. Participants were 157 pregnant women with diabetes, and the setting was Mbuya Nehanda and Chitungwiza Maternity Hospitals, Harare, Zimbabwe.Results: Main outcome measures were maternal and perinatal outcomes. Mean adherence to anti-diabetic therapy was 66.7%. Perinatal outcomes observed were hypertensive disorders (34.5%), Caesarean delivery (45.9%), maternal diabetic ketoacidosis (5.1%), maternal hypoglycaemia (15.9%), and candidiasis (19.7%). Neonatal outcomes were perinatal mortality (15.9%), low Apgar score at 1 minute (26.8%), low Apgar score at 5 minutes (24.8%), macrosomia (33.8%), neonatal hypoglycaemia (15.3%), and neonatal hyperbilirubinemia (7.6%). There were significant associations between adherence and Caesarean delivery (RR 1.9, 95% CI 1.28 to 2.81, p = 0.0014), candidiasis (RR 3.95, 95% CI 1.65 to 9.47, p = 0.002), low Apgar score at 1 minute (RR 2.15, 95% CI 1.16 to 3.98, p = 0.015) and at 5 minutes (RR 1.95, 95% CI 1.03 to 3.69, p = 0.039), and perinatal mortality (RR 3.08, 95% CI 1.11 to 8.52, p = 0.018).Conclusions: Adherence to anti-diabetic therapy was sub-optimal and was associated with some adverse perinatal outcomes. Promotion of adherence, through routine individualised counselling, monitoring and assessment, is vital to minimise adverse outcomes.Keywords: anti-diabetic therapy, diabetes, maternal outcomes, perinatal outcomes, pregnanc

    Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare)

    Get PDF
    Salinity can negatively impact crop growth and yield. Changes in DNA methylation are known to occur when plants are challenged by stress and have been associated with the regulation of stress-response genes. However, the role of DNA-methylation in moderating gene expression in response to salt stress has been relatively poorly studied among crops such as barley. Here, we assessed the extent of salt-induced alterations of DNA methylation in barley and their putative role in perturbed gene expression. Using Next Generation Sequencing, we screened the leaf and root methylomes of five divergent barley varieties grown under control and three salt concentrations, to seek genotype independent salt-induced changes in DNA methylation. Salt stress caused increased methylation in leaves but diminished methylation in roots with a higher number of changes in leaves than in roots, indicating that salt induced changes to global methylation are organ specific. Differentially Methylated Markers (DMMs) were mostly located in close proximity to repeat elements, but also in 1094 genes, of which many possessed gene ontology (GO) terms associated with plant responses to stress. Identified markers have potential value as sentinels of salt stress and provide a starting point to allow understanding of the functional role of DNA methylation in facilitating barley’s response to this stressor

    Towards Structure-Property-Function Relationships for Eumelanin

    Full text link
    We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins - key functional bio-macromolecular systems responsible for photo-protection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.Comment: 19 pages, 8 figures, Invited highlight article for Soft Matte

    Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (\u3cem\u3eHordeum vulgare\u3c/em\u3e)

    Get PDF
    Salinity can negatively impact crop growth and yield. Changes in DNA methylation are known to occur when plants are challenged by stress and have been associated with the regulation of stress-response genes. However, the role of DNA-methylation in moderating gene expression in response to salt stress has been relatively poorly studied among crops such as barley. Here, we assessed the extent of salt-induced alterations of DNA methylation in barley and their putative role in perturbed gene expression. Using Next Generation Sequencing, we screened the leaf and root methylomes of five divergent barley varieties grown under control and three salt concentrations, to seek genotype independent salt-induced changes in DNA methylation. Salt stress caused increased methylation in leaves but diminished methylation in roots with a higher number of changes in leaves than in roots, indicating that salt induced changes to global methylation are organ specific. Differentially Methylated Markers (DMMs) were mostly located in close proximity to repeat elements, but also in 1094 genes, of which many possessed gene ontology (GO) terms associated with plant responses to stress. Identified markers have potential value as sentinels of salt stress and provide a starting point to allow understanding of the functional role of DNA methylation in facilitating barley’s response to this stressor

    Microborings reveal alternating agitation, resting and sleeping stages of modern marine ooids

    Get PDF
    ABSTRACTOoids are abundant carbonate grains throughout much of Earth's history, but their formation is not well understood. Here, an in‐depth study of microbial bioerosion features of Holocene ooids from the Schooner Cays ooid shoals (Great Bahama Bank, Eleuthera, Bahamas) and the Shalil al Ud ooid shoals in the Gulf (Abu Dhabi, United Arab Emirates) is presented. No obvious differences were found in ooid size distribution, cortex layer thickness, the composition of nuclei or euendolithic community when comparing ooids from both locations. Microendolithic borings are present in most studied ooid surfaces, but the intensity of (micro‐)bioerosion varies significantly. Applying an epoxy vacuum cast‐embedding technique allowed the identification of ichnotaxa and their inferred producers (various genera of diatoms, cyanobacteria, coccolithophores and unspecified bacteria). Euendolithic taxa have specific low‐light tolerances and light optima. This implies that information about the relative bathymetry (seafloor versus burial within an ooid shoal) and ecology for ooid cortex formation can be obtained via the presence or absence of their respective ichnotaxa. The history of a statistically significant number of ooid cortices can be translated into dune dynamics and the temporal variations thereof by allocating the inferred index producer to a defined burial or light penetration zone. In this context, ooid formation can be divided into four stages: (i) an agitation stage in the water column, characterized by the colonization of grains by photoautotrophs; (ii) a resting stage, characterized by temporary burial of the ooid, leading to immobilization and a shift towards heterotrophs; (iii) a sleeping stage, characterized by prolonged burial and colonialization by organotrophs; and (iv) a reactivation stage, characterized by a resurfacing of the ooid and a subsequent shift towards photoautotrophs. The sleeping stage is presumably a stage of ooid degradation where bioerosion, mainly by heterotrophic fungi and bacteria is particularly active.</jats:p

    Surveillance indicators for potential reduced exposure products (PREPs): developing survey items to measure awareness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decade, tobacco companies have introduced cigarettes and smokeless tobacco products (known as Potential Reduced Exposure Products, PREPs) with purportedly lower levels of some toxins than conventional cigarettes and smokeless products. It is essential that public health agencies monitor awareness, interest, use, and perceptions of these products so that their impact on population health can be detected at the earliest stages.</p> <p>Methods</p> <p>This paper reviews and critiques existing strategies for measuring <it>awareness </it>of PREPs from 16 published and unpublished studies. From these measures, we developed new surveillance items and subjected them to two rounds of cognitive testing, a common and accepted method for evaluating questionnaire wording.</p> <p>Results</p> <p>Our review suggests that high levels of awareness of PREPs reported in some studies are likely to be inaccurate. Two likely sources of inaccuracy in awareness measures were identified: 1) the tendency of respondents to misclassify "no additive" and "natural" cigarettes as PREPs and 2) the tendency of respondents to mistakenly report awareness as a result of confusion between PREPs brands and similarly named familiar products, for example, Eclipse chewing gum and Accord automobiles.</p> <p>Conclusion</p> <p>After evaluating new measures with cognitive interviews, we conclude that as of winter 2006, awareness of reduced exposure products among U.S. smokers was likely to be between 1% and 8%, with the higher estimates for some products occurring in test markets. Recommended measurement strategies for future surveys are presented.</p

    The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Full text link
    We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/1/gcb13160_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/2/gcb13160.pd
    corecore